Algebraic Properties of Chromatic Roots
نویسندگان
چکیده
A chromatic root is a root of the chromatic polynomial of a graph. Any chromatic root is an algebraic integer. Much is known about the location of chromatic roots in the real and complex numbers, but rather less about their properties as algebraic numbers. This question was the subject of a seminar at the Isaac Newton Institute in late 2008. The purpose of this paper is to report on the seminar and subsequent developments. We conjecture that, for every algebraic integer α, there is a natural number n such that α+n is a chromatic root. This is proved for quadratic integers; an extension to cubic integers has been found by Adam Bohn. The idea is to consider certain special classes of graphs for which the chromatic polynomial is a product of linear factors and one “interesting” factor of larger degree. We also report computational results on the Galois groups of irreducible factors of the chromatic polynomial for some special graphs. Finally, extensions to the Tutte polynomial are mentioned briefly.
منابع مشابه
The Chromatic Polynomials and its Algebraic Properties
This paper studies various results on chromatic polynomials of graphs. We obtain results on the roots of chromatic polynomials of planar graphs. The main results are chromatic polynomial of a graph is polynomial in integer and the leading coefficient of chromatic polynomial of a graph of order n and size m is one, whose coefficient alternate in sign. Mathematics subject classification 2000: 05C...
متن کاملIntersection graphs associated with semigroup acts
The intersection graph $mathbb{Int}(A)$ of an $S$-act $A$ over a semigroup $S$ is an undirected simple graph whose vertices are non-trivial subacts of $A$, and two distinct vertices are adjacent if and only if they have a non-empty intersection. In this paper, we study some graph-theoretic properties of $mathbb{Int}(A)$ in connection to some algebraic properties of $A$. It is proved that the fi...
متن کاملChromatic roots as algebraic integers
A chromatic root is a zero of the chromatic polynomial of a graph. At a Newton Institute workshop on Combinatorics and Statistical Mechanics in 2008, two conjectures were proposed on the subject of which algebraic integers can be chromatic roots, known as the “α + n conjecture” and the “nα conjecture”. These say, respectively, that given any algebraic integer α there is a natural number n such ...
متن کاملCertificates of Factorisation for Chromatic Polynomials
The chromatic polynomial gives the number of proper λ-colourings of a graph G. This paper considers factorisation of the chromatic polynomial as a first step in an algebraic study of the roots of this polynomial. The chromatic polynomial of a graph is said to have a chromatic factorisation if P (G,λ) = P (H1, λ)P (H2, λ)/P (Kr , λ) for some graphs H1 and H2 and clique Kr. It is known that the c...
متن کاملChromatic Factorisations
The chromatic polynomial gives the number of proper λ-colourings of a graph G. This paper considers factorisation of the chromatic polynomial as a first step in an algebraic study of the roots of this polynomial. The chromatic polynomial of a graph is said to have a chromatic factorisation if P (G, λ) = P (H1, λ)P (H2, λ)/P (Kr, λ) for some graphs H1 and H2 and clique Kr. It is known that the c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 24 شماره
صفحات -
تاریخ انتشار 2017